
Detlef Hühnlein et al. (Eds.): Open Identity Summit 2015,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2015 141

Innovative Building Blocks for Versatile Authentication
within the SkIDentity Service

Detlef Hühnlein1 Max Tuengerthal1 Tobias Wich1 Tina Hühnlein1 Benedikt
Biallowons1

Abstract: Accepting arbitrary electronic identity cards (eIDs) and similar authenticators in cloud and
web applications has been a challenging task. Thanks to the multiply awarded "SkIDentity Service"
this has changed recently. This versatile authentication infrastructure combines open technologies,
international eID standards and latest research results with respect to trusted cloud computing in
order to offer electronic identification and strong authentication in form of a trustworthy, simple
to use and cost efficient cloud computing service, which supports various European eIDs as well
as alternative authenticators proposed by the FIDO Alliance for example. The present contribution
exposes innovative and patent pending building blocks of the SkIDentity Service: (1) The "Identity
Broker", which eases the integration of authentication, authorization, federation and application ser-
vices and in particular allows to derive secure credentials from conventional eID cards, which can be
transferred to mobile devices for example. (2) The "Universal Authentication Service" (UAS), which
allows to execute arbitrary authentication protocols, which are specified by the recently introduced
"Authentication Protocol Specification" (APS) language, (3) the "Cloud Connector" which eases the
integration of federation protocols into web applications and last but not least (4) the "SkIDentity
Self-Service Portal", which makes it extremely easy for Service Providers to configure the necessary
parameters in order to connect with the SkIDentity Service and use strong authentication in their
individual applications.

1 Introduction

As the inherent weaknesses of password-based authentication [Ne94, IWS04] are about
to become obvious in practice (see [Fe14a, Fe14b, CN14] for example) there seems to
be a trend towards implementing strong authentication for web-based applications [Go11,
Am13b, Mi13, Li13, FI] using a variety of protocols and authentication means. While sup-
porting versatile authentication technologies certainly promotes the diffusion and adoption
in practice [HRZ10], it also imposes the new challenge how to integrate and handle the
large variety of involved technologies in an efficient manner. A basic strategy for handling
this kind of complexity is to introduce appropriate interfaces, which allow to decouple
certain services and modules, which can be developed, maintained and integrated in an in-
dependent manner. On a macro scale this approach has lead to the versatile authentication
infrastructure designed and developed within the SkIDentity project, which has been sup-
ported by the German government within the "Trusted Cloud"2 programme (see Section 2
1 ecsec GmbH, Sudetenstraße 16, 96247 Michelau, Germany, {firstname.secondname}@ecsec.de
2 See http://trusted-cloud.de.

This work was partly supported by the German Federal Ministry of Economics and Energy (BMWi)
within the Trusted Cloud project SkIDentity (01MD11025A) (see https://skidentity.com) and the
European Union within the 7th FP project FutureID (ICT-318424) (see https://futureid.eu).

142 Detlef Hühnlein et al.

and especially Figure 1) and on a micro scale to the highly modular and extensible Open
eCard App (see [Wi13]), which allows to support arbitrary smart cards and authentication
protocols in an efficient manner.

Against this background we will go one step further here and expose some innovative
and patent pending building blocks of this versatile authentication system in Section 3:
(1) The "Identity Broker" (see Section 3.1), which allows to integrate arbitrary services
for authentication, authorization and federation and in particular allows to derive secure
credentials from conventional eID cards, which can be transferred to mobile devices for ex-
ample. (2) The "Universal Authentication Service" (UAS) (see Section 3.2), which allows
to execute arbitrary authentication protocols, which are specified by the recently intro-
duced "Authentication Protocol Specification" (APS) language [AM13a, AM15]. (3) The
"Cloud Connector" (see Section 3.3) which eases the integration of federation protocols
into web applications and last but not least (4) the "SkIDentity Self-Service Portal" (see
Section 3.4), which makes it extremely easy for Service Providers to configure the nec-
essary parameters in order to integrate with the SkIDentity Service in order to use strong
authentication. Section 4 summarizes the main aspects of the present contribution and pro-
vides an outlook towards future developments.

2 Overview of the SkIDentity system

The main contribution of the present paper is to expose some innovative and patent pend-
ing building blocks of the SkIDentity system as outlined in [Sk12] and Figure 1. For this
purpose we start by briefly recalling the main aspects of the SkIDentity Reference Archi-
tecture.

The SkIDentity system is depicted in Figure 1 and builds upon the concept of Federated
Identity Management as explained in [MR08, HRZ10, Ca05a]. It refines the classical com-
ponents "Client", "Service Provider" and "Identity Provider" in order to support arbitrary
authentication mechanisms, eID-tokens, credential technologies and federation protocols.

There are components at the Client, the Service Provider and within the SkIDentity Ser-
vice.

2.1 System Components at the Client

The system of the User (Client) comprises the User Agent (UA), which can be realised by
an arbitrary browser, and an appropriate eCard-App (eCA), such as the Open eCard App
[Hü12, Wi13], which enables the User to authenticate at an Authentication Service (AS)
using some Credential. Due to the modular architecture based on ISO/IEC 24727 [IS08]
it is easy to support various smart cards and authentication protocols. Using the add-on
framework introduced in [Wi13] it is also easy to add application-specific logic3, which
can be accessed via corresponding interfaces.
3 See [Ku13] for an example.

Innovative Building Blocks for Versatile Authentication within the SkIDentity Service 143

Fig. 1: SkIDentity Reference Architecture

2.2 System Components at the Service Provider

The system of the Service Provider (SP) comprises the Cloud Application (CA) and an ap-
propriate Cloud Connector (CC) (see Section 3.3), which allows to communicate with an
appropriate Federation Service (FS) in the SkIDentity Infrastructure using an appropriate
federation protocol such as SAML [Ca05a], OpenID [Op] or OAuth [HL10, Ha12, HJ12]
for example.

2.3 SkIDentity Service

Within the SkIDentity Service there are various Federation Services (FS) and a variety of
Authentication Services (AS), which are connected via the Identity Broker (IdB) (see Sec-
tion 3.1). The Identity Broker acts as information intermediary and provides the different
eID-Services in a bundled and rehashed way. This offers the possibility to use the different
services and tokens (electronic identity cards, electronic health cards, health professional
cards, bank and signature cards, company ID tokens and last but not least FIDO’s U2F to-
ken [FI]) with an easy and consistent interface for the secure authentication in cloud based
applications.

3 Innovative Building Blocks of the SkIDentity Service

This section exposes innovative and patent pending building blocks of the SkIDentity Ser-
vice. The "Identity Broker" is discussed in Section 3.1, the "Universal Authentication Ser-

144 Detlef Hühnlein et al.

vice" is subject of Section 3.2, the "Cloud Connector" is subject of Section 3.3 and the
"SkIDentity Self-Service Portal" finally is introduced in Section 3.4.

Fig. 2: Identity Selector within the Identity Broker

3.1 Identity Broker

As depicted in Figure 1 the Identity Broker (IdB) is the central component within the
SkIDentity Service, which receives authentication requests from some FS and forwards
this request to an appropriate AS. This service performs the authentication of the User
and returns the result to the IdB, which will return the received data to the calling FS.
The selection of the AS is performed based on (1) the authentication options acceptable
by the Service Provider, (2) the technical capabilities of the Client (e.g. whether an eID
client software is present or not) and finally (3) the credential selected by the User among
the possible options as depicted in Figure 2. Based on this information the IdB is able to
determine a suitable AS, which will perform the authentication of the User.

The set of acceptable authentication options and requested attributes is specified by the
Service Provider using the SkIDentity Self-Service Portal (see Section 3.4), which trans-
lates the choices to corresponding XML-based SAML Metadata structures, as outlined in
[HTW14].

Innovative Building Blocks for Versatile Authentication within the SkIDentity Service 145

The IdB may not only act as a dispatcher, which simply forwards messages to some AS, but
the IdB may also initiate the derivation of a cryptographically protected credential from
a conventional eID card. Such a "Cloud Identity" can be securely stored on the User’s
system, transferred to another device of the User (e.g. his personal smart phone) and it
may be bound to an additional cryptographic hardware token, in order to enhance security.
A Cloud Identity may be seen as a cryptographically secured copy of an original eID,
which may substitute a real eID in various online scenarios, while supporting a high level
of usability. As a Cloud Identity can be transferred to arbitrary smart phones, this approach
turns SkIDentity into a "Mobile eID as a Service" platform.

3.2 Universal Authentication Service

The Universal Authentication Service (UAS) is a specifically powerful Authentication Ser-
vice, which has been developed within the FutureID project and which makes it easy to
support arbitrary authentication protocols.

As the existing eID cards, eHealth cards, and eSign cards already support a large variety
of different authentication protocols and it is expected that future authentication tokens
will support other credentials and authentication protocols, it would be close to impossible
to implement all required protocols using a conventional approach, because this would
require a specialized program module for each authentication protocol.

In order to solve this problem, protocols are described in the Authentication Protocol Spec-
ification (APS) language [AM13a, AM15]. The APS descriptions of the authentication
protocols in turn refer to appropriate Basic Services, such as cryptographic primitives or
smart card commands according to ISO/IEC 7816 [IS]. As the different authentication
protocols are all composed of a rather limited set of Basic Services, the problem of sup-
porting arbitrary authentication protocols is reduced to providing this limited set of basic
functionality and providing appropriate APS descriptions for the different authentication
protocols.

Another advantage of specifying authentication protocols in the APS language is that the
APS language is directly supported by state of the art formal protocol analysis tools, such
as OFMC [MV09], that can be used to prove security properties of the authentication
protocols.

The core component of the UAS is the Job Execution Environment (JEE) (see Section 3.2.2),
which runs authentication protocols specified in the APS language. This makes it possible
to support arbitrary protocols in a very efficient manner.

3.2.1 Authentication Protocol Specification Language

Describing the APS language is beyond the scope of this paper and we refer to [AM13a,
AM15] for details. Instead, in Listing 1, we present an example which demonstrates the

146 Detlef Hühnlein et al.

flavor of describing authentication protocols in APS. In this protocol, two parties (PCD
and PICC) want to authenticate each other using an authenticated Diffie-Hellman key ex-
change protocol. The specification in Listing 1 consists of (1) the protocol name, (2) type
declarations, (3) message formats, (4) the initial knowledge of the participants, (5) the ac-
tions that describe the message that are sent/received by the parties (this is the main part
of the specification), and (6) the goals (security properties) this protocol must satisfy.

Protocol: EAC
Types:

Nonce RpiccTA , RpiccCA;
...

Formats:
eac1input(Msg , ImpData , ImpData , ImpData , ImpData);
eac1output(ImpData , ImpData , ImpData , efcardaccess , Agent , Nonce);
...

Knowledge:
PCD: cert(PCD ,pk(PCD),ca), pk(PCD), pk(ca), ...;
PICC: cert(PICC ,exp(g,sk(PICC)),ca), pk(ca), sk(PICC), ...;

Actions:
[PCD]*->*[PICC]: eac1input(cert(PCD ,pk(PCD),ca), CertDesc , ...)
[PICC]*->*[PCD]: eac1output(RC, CHAT , CAR , EFCA , IDPICC , RpiccTA)
let PK_PCD = exp(g,X)
let S_PCD = sign(inv(pk(PCD)),(IDPICC ,RpiccTA ,comp(PK_PCD)))
[PCD]*->*[PICC]: eac2input(CertChain , PK_PCD , S_PCD)
let PK_PICC = exp(g,sk(PICC))
let K = exp(PK_PCD ,sk(PICC)) # = exp(PK_PICC ,X)
let Kmac = kdf(K,RpiccCA)
let Tpicc = mac(Kmac ,PK_PCD)
[PICC]*->*[PCD]: eac2output(cert(PICC ,PK_PICC ,ca), Tpicc , RpiccCA)

Goals:
PICC authenticates PCD on Tpicc
PCD authenticates PICC on Tpicc
K secret of PICC , PCD

List. 1: The EAC protocol specified in the APS language.

3.2.2 Job Execution Environment

The Job Execution Environment (JEE) is able to load and execute protocols that are defined
in the APS language. Since the JEE is not able to execute the abstract APS directly, it must
first be compiled to some kind of executable script code. For this purpose the JEE supports
JavaScript to which an APS file is compiled to be executed.

An important feature of the JEE is the possibility to access and execute the Basic Services
(BS) which provide different functions for common tasks, e.g. to compute a hash value,
obtain the status of a certificate via Online Certificate Status Protocol (OCSP) or to create
a certain Application Protocol Data Unit (APDU), which is to be sent to an Interface
Device (IFD) component, which in turn communicates with a smart card. Furthermore

Innovative Building Blocks for Versatile Authentication within the SkIDentity Service 147

Fig. 3: Structure of a Credential-specific APS (CAPS) package.

the JEE may be equipped with additional JavaScript-based Extended Services (ES), which
combine several calls and hence may be used to provide higher level functionality.

The difference between the Extended Services and the Basic Services is that the Basic
Services are available in the Universal Authentication Service per default. Extended Ser-
vices are usually more light-weight and are shipped together with a specific APS file. The
environment that is needed by a specific protocol can be specified within the manifest file,
which is distributed together with the APS file, which specifies the authentication protocol.
The JEE uses this configuration file to set up a context in which the authentication protocol
is executed. Every instance of a protocol has its own context so that the different instances
do not interfere with each other.

Protocol descriptions are distributed in Java Archive (JAR) files that can be loaded by the
Job Execution Environment during runtime. Since the leading factor when determining the
protocol (and, hence, the JAR file) to be used for authentication is the type of the credential
(i.e., the type of an eID card or some other authentication token) that is used for authen-
tication, we call these JAR files Credential-specific APS (CAPS) packages. Besides the
script files that define the protocol and the configuration that is used to set up the context
for the protocol, a CAPS package can optionally contain additional Extended Services,
which can be provided in form of JavaScript files. Furthermore, it optionally contains in-
formation about extended application logic that is to be executed after the authentication
has been performed. For example, in case the credential is an eID card, the application
logic might communicate with the card to sign messages or to obtain attributes from the
card. Obtaining attributes using secure messaging established during authentication is the
most common use case. It is therefore possible to provide an attribute configuration which
provides information about how attributes are obtained and extracted from eID cards. The
structure of a CAPS package is depicted in Figure 3.

148 Detlef Hühnlein et al.

We now describe the processing within the JEE in more detail. It can be structured into
three phases: (1) Initialization, (2) Execution of the Authentication Protocol and (3) Exe-
cution of the Application Logic.

Initialization. In the initialisation phase, the JEE loads the CAPS package, creates an
initial (job execution) context, for the protocol to be executed, and compiles the authenti-
cation protocol that is specified in the APS language into executable JavaScript code.

Execution of the authentication protocol. In this phase, the JEE first executes initial-
ization code (if provided) and then executes the authentication protocol, i.e., the previously
generated JavaScript code. During this execution, the JavaScript code may call predefined
functions (crypt, decrypt, hash, etc.) to perform basic cryptographic operations. The JEE
translates these function calls into calls to corresponding Basic Services (BS) or Extended
Services (ES). Which algorithm to call (e.g., SHA-256 for hashing) is determined by the
JEE during runtime using the settings given in the CAPS package (it may depend on the
context, in particularly on messages received from the client). To generate and parse mes-
sages that are sent to/received from the client, the JavaScript code may use the message
format objects that are provided by the CAPS package. Furthermore, the JavaScript code
may call functions to send and receive messages to/from the network.

3.3 Cloud Connector

If the Cloud Application already supports a standardized federation protocol, such as
SAML [Ca05a] or OAuth [HJ12] for example, it can directly communicate with the cor-
responding Federation Service within the SkIDentity Service. If not, it may perform the
integration using the Cloud Connector (CC).

Fig. 4: Architecture of the SkIDentity Cloud Connector

As depicted in Figure 4, the CC is a modular integration library, which is available for
different platforms, such as Java, PHP or .NET for example, and consists of a central com-
ponent (Cloud Connector Core), which is accessible via a simple CC-API, which allows
to

Innovative Building Blocks for Versatile Authentication within the SkIDentity Service 149

• request the authentication of the User (authenticate()),

• get the identifier of the User determined during authentication (getNameId()),

• access a particular attribute (getAttribute($name)) or all attributes of the User
(getAttributes()) or

• logout and redirect the User to a particular URL (logout($return)).

While the Platform Specific Modules (PSMi) implement the different federation protocols
(SAML, OAuth etc.), the Application Specific Modules (ASM j) take care about the fi-
nal integration into some application. There are various Application Specific Modules for
popular Open Source applications, including Joomla, WordPress, ownCloud, MediaWiki,
TYPO3, phpBB and Magento for example.

3.4 SkIDentity Self-Service Portal

While the integration of eIDs into cloud and web applications has been a challenging task,
the SkIDentity Self-Service Portal4 makes it easy for Service Providers to configure the
parameters, which are required for the smooth integration of an individual service. The
configuration can simply be performed by a responsive web application, which allows to
specify (1) the information which is displayed to the User (see Figure 2), (2) the accept-
able credentials and required attributes and (3) the corresponding technical parameters re-
quired for the federation protocol. As standardized SAML Metadata structures according
to [Ca05b, Ca12] are used for this purpose, it is easy to import existing SAML Metadata
files and export the generated data to another standardized system.

4 Summary and Outlook

The present paper exposed some innovative and patent pending building blocks of the
multiply awarded SkIDentity Service, which makes it easy to accept eID cards and similar
authenticators in cloud and web applications. In particular it was shown above that this
system comprises an Identity Broker (see Section 3.1) which makes it easy to integrate
arbitrary services for authentication and federation and create cryptographically protected
derived credentials, which can be securely transferred to mobile devices for example. This
gives rise to an innovative "Mobile eID as a Service" offering. Using the innovative Uni-
versal Authentication Service (see Section 3.2) one can support arbitrary authentication
protocols, which are described by an appropriate "Alice and Bob"-like language as out-
lined in Listing 1. Last but not least it is easy to integrate cloud and web applications with
the SkIDentity Service by using the convenient Self-Service Portal (see Section 3.4) and
an appropriate Cloud Connector (see Section 3.3), if necessary.

4 See https://sp.skidentity.de.

150 Detlef Hühnlein et al.

While the current focus of the SkIDentity Service is to provide strong authentication, fu-
ture developments will extend the service in order to support authorization and provision-
ing as well as electronic signatures and in the long term perspective also the management
of more complete business processes.

References

[AM13a] Almousa, Omar; Mödersheim, Sebastian: , Future AnB: The projected APS Lan-
guage of FutureID. FutureID – WP42 / D42.3, 2013. http://futureid.eu/data/
deliverables/year1/Public/FutureID_D42.03_WP42_v1.0_Design%20of%
20formal%20APS-language.pdf.

[Am13b] Amazon Inc.: , AWS Multi-Factor Authentication, 2013. http://aws.amazon.com/
de/mfa/.

[AM15] Almousa, Omar; Mödersheim, Sebastian: , Alice and Bob: Reconciling Formal Mod-
els and Implementation. submitted for publication, 2015. http://www.imm.dtu.dk/
~samo/SPS.pdf.

[Ca05a] Cantor, Scott; Kemp, John; Philpott, Rob; Maler, Eve: , Assertions and Protocol
for the OASIS Security Assertion Markup Language (SAML) V2.0. OASIS Stan-
dard, 15.03.2005, 2005. http://docs.oasis-open.org/security/saml/v2.0/
saml-core-2.0-os.pdf.

[Ca05b] Cantor, Scott; Moreh, Jahan; Philpott, Rob; Maler, Eve: , Metadata for the OASIS Security
Assertion Markup Language (SAML) V2.0. OASIS Standard, 15.03.2005, 2005. http:
//docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf.

[Ca12] Cantor, Scott: , SAML V2.0 Metadata Extensions for Login and Discovery
User Interface Version 1.0. OASIS Committee Specification 01, 2012. http:
//docs.oasis-open.org/security/saml/Post2.0/sstc-saml-metadata-ui/
v1.0/sstc-saml-metadata-ui-v1.0.pdf.

[CN14] CNET: , eBay hacked, requests all users change passwords.
Press Release 21.05.2014, 2014. http://www.cnet.com/news/
ebay-hacked-requests-all-users-change-passwords/.

[Fe14a] Federal Office for Information Security: , Million-fold Identity Theft: Federal Office for
Information Security offers security test for email addresses. Press Release 21.01.2014,
in German, 2014. https://www.bsi.bund.de/DE/Presse/Pressemitteilungen/
Presse2014/Mailtest_21012014.html.

[Fe14b] Federal Office for Information Security: , New Case of large-scale Identity Theft:
Federal Office for Information Security informs victims. Press Release 07.04.2014,
in German, 2014. https://www.bsi.bund.de/DE/Presse/Pressemitteilungen/
Presse2014/Neuer_Fall_von_Identitaetsdiebstahl_07042014.htmll.

[FI] FIDO Alliance: , FIDO Alliance Specifications (UAF and U2F). https://
fidoalliance.org/specifications/download/.

[Go11] Google: , Advanced sign-in security for your Google account, 2011. http://
googleblog.blogspot.de/2011/02/advanced-sign-in-security-for-your.
html.

Innovative Building Blocks for Versatile Authentication within the SkIDentity Service 151

[Ha12] Hardt, D.: , The OAuth 2.0 Authorization Framework. Request For Comments – RFC
6749, 2012. http://www.ietf.org/rfc/rfc6749.txt.

[HJ12] Hardt, D.; Jones, M.: , The OAuth 2.0 Authorization Framework: Bearer Token Usage.
Request For Comments – RFC 6750, 2012. http://www.ietf.org/rfc/rfc6750.
txt.

[HL10] Hammer-Lahav, E.: , The OAuth 1.0 Protocol. Request For Comments – RFC 5849, April
2010. http://www.ietf.org/rfc/rfc5849.txt.

[HRZ10] Hühnlein, Detlef; Rossnagel, Heiko; Zibuschka, Jan: Diffusion of Federated Identity Man-
agement. In: Tagungsband “Sicherheit 2010”. volume 170 of LNI. GI, pp. 25–37, 2010.
http://www.ecsec.de/pub/Sicherheit2010.pdf.

[HTW14] Horsch, Moritz; Tuengerthal, Max; Wich, Tobias: SAML Privacy-Enhancing Profile. In
(Hühnlein, Detlef; Rossnagel, Heiko, eds): Proceedings of Open Identity Summit 2014.
volume 237 of LNI. GI, pp. 11–22, 2014.

[Hü12] Hühnlein, Detlef; Petrautzki, Dirk; Schmölz, Johannes; Wich, Tobias; Horsch, Moritz;
Wieland, Thomas; Eichholz, Jan; Wiesmaier, Alexander; Braun, Johannes; Feldmann,
Florian; Potzernheim, Simon; Schwenk, Jörg; Kahlo, Christian; Kühne, Andreas; Veit,
Heiko: On the design and implementation of the Open eCard App. In: Sicherheit
2012. GI-LNI, 2012. http://subs.emis.de/LNI/Proceedings/Proceedings195/
95.pdf.

[IS] ISO/IEC 7816: , Identification cards – Integrated circuit cards – Part 1-15. International
Standard.

[IS08] ISO/IEC: , ISO/IEC 24727: Identification cards – Integrated circuit cards programming
interfaces – Part 1-6, 2008.

[IWS04] Ives, Blake; Walsh, Kenneth R; Schneider, Helmut: The domino effect of password reuse.
Communications of the ACM, 47(4):75–78, 2004.

[Ku13] Kuhlisch, Raik; Petrautzki, Dirk; Schmölz, Johannes; Kraufmann, Ben; Thiemer, Florian;
Wich, Tobias; Hühnlein, Detlef; Wieland, Thomas: An Open eCard Plug-in for accessing
the German national Personal Health Record. In: Open Identity Summit 2013. volume
223 of GI-LNI, 2013.

[Li13] Lindemann, Rolf: Not Built On Sand – How Modern Authentication Complements Fed-
eration. In: Proceedings of Open Identity Summit 2013. volume 223 of Lecture Notes in
Informatics. GI e.V., pp. 164–168, 2013.

[Mi13] Microsoft Inc.: , Microsoft Account Gets More Secure, 2013. http:
//blogs.technet.com/b/microsoft_blog/archive/2013/04/17/
microsoft-account-gets-more-secure.aspx.

[MR08] Maler, Eve; Reed, Drummond: The Venn of Identity: Options and Issues in Federated
Identity Management. IEEE Security & Privacy Magazine, 6(2):16–23, 2008.

[MV09] Mödersheim, Sebastian; Viganò, Luca: The Open-Source Fixed-Point Model Checker for
Symbolic Analysis of Security Protocols. In (Aldini, Alessandro; Barthe, Gilles; Gorrieri,
Roberto, eds): FOSAD. volume 5705 of Lecture Notes in Computer Science. Springer,
pp. 166–194, 2009.

[Ne94] Neumann, Peter G.: Risks of passwords. Commun. ACM, 37(4):126, 1994.

152 Detlef Hühnlein et al.

[Op] OpenID Foundation: , OpenID Authentication 2.0. Final, December 5, 2007. http:
//openid.net/specs/openid-authentication-2_0.html.

[Sk12] SkIDentity-Team: , SkIDentity - Reference Architecture. Version 1.0, 2012.

[Wi13] Wich, Tobias; Horsch, Moritz; Petrautzki, Dirk; Schmölz, Johannes; Hühnlein, Detlef;
Wieland, Thomas; Potzernheim, Simon: An extensible platform for eID, signatures and
more. In: Proceedings of Open Identity Summit 2013. volume 223 of Lecture Notes in
Informatics. GI e.V., pp. 55–68, 2013.

